
In the approximations adopted here both the effective energy and the frequency are 
independent of temperature. This means that the Arrhenius expression for the coefficient 
of self-diffusion is valid: 

D = D~exp(--~H). (25)  

Figure 3 shows the dependence of the logarithm of the coefficient of self-diffusion on 
pressure; note the monotonic increase of the diffusion coefficient with increasing pressure. 

NOTATION 

N, number of particles; V, volume of the system; P~, momentum; I~ , angular momen- 
tum; m, mass of a molecule; x~, five-dimensional vector; #(x~, xv), molecular interaction 
potential; w, cell volume; 6, reciprocal of the temperature; ~ , pseudopotential; ~(x~) , 
potential of the mean force; P, pressure; no, concentration of vacancies; D, coefficient of 
self-diffusion; k, frequency of jumps; R, length of a molecular jump; A, two-dimensional 
space; sij, boundary between two cells; ~, effective frequency; E, activation energy of self- 
diffusion; nij, unit vector; e~ , unit orientation vector of a molecule; ~, Lennard-Jones 
potential well depth; r0, linear parameter in the Lennard-Jones potential; Zl, number of 
nearest neighbors. 
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OPTIMIZING HOT PRESSING FOR 

COLD-PRESSED POROUS BLANKS 

V. B. Glasko, I. V. Demina, 
S. I. Zastrozhnov, B. V. Safronov, 
A. N. Tikhonov, M. K. Trubetskov, 
and M. P. Shapovalov 

UDC 517.9:536.2 

A model is used for three-stage hot pressing, which is based on the effective 
characteristics for the porous cold-pressed blanks and is used to optimize the 
process as a whole. 

1. Powder metallurgy is important because it not only economizes in metal and reduces 
costs but also provides composites with unique properties. Sometimes, one component here 
is hot pressing for cold-pressed porous blanks, in which the powder sinters. 

Long sintering at high temperatures can cause selective recrystallization, or recry- 
stallization embrittlement in the more typical refractory materials [i], i.e., strength 
loss, so it is necessary to control the heat treatment to obtain the necessary quality. 

The control task is an inverse treatment [2],and computerized solution requires 
regularization [3]. A similar problem has been considered in [4] for another powder-proces- 
sing technique. 
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Here we give a regularized formulation of this control and a solution on the basis of 
a fairly simple phenomenological model. 

Dynamic hot pressing involves three stages: induction heating under vacuum, cooling 
under vacuum during transfer to the mold, and cooling in the mold under pressure [5]. 

We consider a long cylindrical blank having radius R, which is infinitely extended, in 
an axisymmetric formulation; the heating in the first stage is in a solenoidal coil, which 
carries a current at a frequency m: I(t)exp(imt), in which I(t) is the slowly varying ampli- 
tude, which is taken subsequently as the control parameter. 

2. Without specifying the model (see section 4), we introduce a semiempirical charac- 
teristic. One naturally assumes, which is confirmed by experiment, that the pressing quality 
is directly related to the temperature and time for a given mold pressure and that there is 
a minimal temperature Uc, the activation temperature, at which the grains sinter. 

If t 2 is the initial moment in the hot pressing and T the final one, the quality of the 
result at a given radius r is characterized by 

T 

Fo (r) = .f" 0 (u (r, t), t,r dr, 
t~ 

in which u(r, t) is the temperature pattern. 

O(u, v)= I "' u>~v, 
[ O, u ~ v ,  

The region ~ with good pressing quality is specified by the following condition: 
the quality characteristic exceeds a certain set level F0, which is defined empirically and 
which is in general dependent on the equipment and pressure: 

={rC[O,  RI, Fo( r )~Fo}.  (1)  

This criterion is natural because the microprocess characteristics, which are largely 
unavailable (for diffusion, phase transformation, etc.), are largely determined by the tem- 
perature-pattern behavior. 

We now consider the optimization. 

3. The temperature pattern at all three stages is dependent on I(t): 

u(r, t ) = u [ r ,  t, I(t)l, 

and we introduce the target functional 

[1 (t)l = R - -  rm~ [I (t)], (2)  

is derived from (i); (2) characterizes the size of the region with 

and then the optimization is formulated as a turning-point treatment 

in  which  rmax=sup r  
r~R 

inadequate sintering, 
for I(t): 

I (t) = arg inf @ [I1, (3)  

in  which J i s  t h e  s e t  o f  c o n s t r a i n t s ,  which i n c l u d e  ones  on I ( t )  as  w e l l  as ones on t h e  tem- 
p e r a t u r e  c o u r s e .  The l a t t e r  a r e  d e f i n e d  by t h e  f o l l o w i n g .  F i r s t l y ,  d u r i n g  i n d u c t i v e  h e a t -  
ing  ( f i r s t  s t a g e ) ,  t h e  t e m p e r a t u r e  a t  any  p o i n t  s h o u l d  n o t  exceed  a p r e s e t  fi, e . g . ,  t h e  
m e l t i n g  p o i n t ,  r e c r y s t a l l i z a t i o n  t e m p e r a t u r e ,  p h a s e - t r a n s i t i o n  p o i n t ,  e t c .  S e c o n d l y ,  when 
t h e  b l ank  i s  p l a c e d  in  t h e  mold,  t h e  s u r f a c e  t e m p e r a t u r e  s h o u l d  n o t  exceed  Us, t h e  t e m p e r a -  
t u r e  a t  which t h e r e  may be r e a c t i o n  w i t h  t h e  mold.  Th i s  becomes v e r y  i m p o r t a n t  in ho t  p r e s -  
s i n g  f o r  r e f r a c t o r y  and a c t i v e  m a t e r i a l s  such  as z i r c o n i u m  under  c o n d i t i o n s  where i t  i s  d i f -  
f i c u l t  to use protective lubricants. 

The (3) treatment is ill-posed; the solution may be obtained by regularization as fol- 
lows. We denote by Kp, p = 0, i, ..., a set of polynomials having degree p and defined in 
the interval tE[0, tl] , with t I the instant when the first stage ends (induction heating). 
For each p, I(t)~Kp is governed by p + 1 parameters, the corresponding coefficients in the 
polynomial from the bounded set, so the Kp are compacts for any p. We consider a series of 
turning-point treatments 

I(t) = arg inf ~[ I ] ,  p - 0, 1 . . . .  ( 4 ) 
IcJf lKp 
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and choose p in accordance with the discrepancy principle [3, 6]. Here, p = 0, which cor- 
responds to l(t) = I = const, provides a discrepancy-regularized approximation, which at 
the same time satisfies design simplicity. 

Computational experiment showed that even the control class l(t) = I = const is 
extremely wide (see section 5), so one cannot merely optimize the thickness of the region 
giving good pressing, but also some less important criterion, as which we take the cooling 
time under vacuum tco = t 2 - t I. 

Reducing tco will mean not only accelerating the entire process but also a power saving, 
since the mean temperature level at t I will be lower. 

The penalty-function method [7, 8] is the most natural way of incorporating^the con- 
straints on the temperature pattern in (4), which involves minimizing @[I] + ~(S 2 + ~2) 

with respect to l(t), in which ~=max( max u(r,t)--u, 0); S=max(ue-- max u(r, t2), O) ; the 

O<~t<~tt 
additional term S introduces a penalty for heating the specimen above fi, where g is the 
penalty for underheating (below the activation temperature u c) at the time t 2 when the blank 
is placed in the mold, and a is the parameter in the penalty-function method, which is selec- 
ted during the calculations. 

This approach allows one to incorporate the above criterion for minimal tco; it is suf- 
ficient to add ~tco to the main functional, where parameter ~ is defined by estimating the 
relative cost of the functional @ and the less important criterion tco. 

In this two-criterion treatment, the control task is formulated as 

I (t) = arg inf F (1), F (l) ~ q~ [I] + cz (S~ q- S~) @ [3tco, (5)  
l~Kp 

and i s  s o l v e d  f o r  each  p by t h e  c o n j u g a t e - d i r e c t i o n  method ( P o w e l l ' s  method)  [8,  9 ] ;  f o r  
p = 0, the (5) treatment amounts to one-dimensional minimization of F(1), which is readily 
done by the parabola method [9], and the resulting regularized solution is I(t) = I = const. 

The algorithm for computing F(I) for each I is governed mainly by the model design, 
which we now consider. 

4. We incorporate the actual structure under dynamic conditions at the phenomenologi- 
cal level by introducing effective thermophysical and electrodynamic characteristics, which 
are dependent on temperature and time and which can be determined for example by solving 
inverse-coefficient treatments [2, 3]. The explicit time dependence at the start also 
enables one to incorporate the pressure factor at that stage. Of course, this common method 
represents a highly simplified description, but one is hardly justified in complicating the 
model by incorporating elastoplastic strain and so on not only because the resulting boun- 
dary-value problems are complicated but also because we have very restricted information on 
the elastic and plastic characteristics of these powders, which are very much dependent on 
composition and production technology. 

The amplitude H of the harmonic magnetic field induced in the specimen during the first 
stage is [i0] defined by 

1 0 [ r OH ) - - i c o p ( u ) p o H = O ,  O < r < R ,  
r Or ~,(u) Or ( 6 )  

OH [ = 0 ,  Hl~=R=nl(t) ,  
Or ]r=O 

in which l(u) and ~(u) are the effective electrical conductivity and relative magnetic per- 
meability for the porous material, which are dependent on u, while n is the number of terms 
per meter on the inductor. 

The thermophysical process here is described by a nonlinear boundary-value problem in 
thermal conduction: 

l OH 2 = c (u) p (u) - - ,  
1 0 rfe(u) + 2~,(u) Ot O < t < t ~ ,  r Or 

Ou 
ult=o = uo, lira rk (u) = O, 

r~+O Or 

800 



OU r=R 
- - k ( u ) - ~ r  = 6a ((U]~--n ~- 273,15)~-- (U~-]- 273,15)~). 

Here k(u), c(u), p(u) are the effective thermal conductivity, specific heat, and density, 

u 0 initial temperature, u e environmental temperature, ~ effective blackness [ii], and o 
Stefan's constant. 

The second stage is cooling under vacuum during transfer to the mold and is described 
by (7) with H~0 (no heat sources); the initial condition at t = t I is taken as the tempera- 
ture pattern at the end of the first stage. 

Let km(u), Cm(U), pm(U) be the thermophysical characteristics of the mold material in 
the third stage, while the characteristics of the material are k'(u), c'(u), p'(u); the con- 
solidation on hot pressing is incorporated by taking the matter as explicitly dependent on 
time: in a time T (a few seconds), the parameters vary linearly from the initial values 
(at t = t2), which correspond to the porous material, to the final ones, which correspond 
to the dense material (at t = t 2 + z). The temperature pattern in the first stage is 

described by 

~ o (rk,(.) au)=c, V au, r Or -$/-r (u) ( u ) - y  0 < r < R, 

ar ~ =cM(u)e~,(u)--~- R<r<R. ,  t~<t<7, 

au k! Ou [ Ou , lira rk' ( u ) ~  = O, (u) = k~ (u) 
r~+o Or ~ r=R--O Of" Ir=R+O 

"--~f r=R--O -- C]U r=RM 
1 (ui,=R-0--ul,=R+0), ~ = 0, - k '  ( . )  - ~-7- ( s )  

in which R m is the outer mold radius. 

The initial condition at t = t 2 is taken as the temperature pattern at the end of the 
0 

second stage (0 < r < R) and for R < r < R m we have u[t=~, :u~, in which u~ is the initial 

mold temperature. The linkage condition in (4) describes the gap between the specimen and 

the mold, thermal resistance R T. 

(6)-(8) describes the cycle and enables one to derive the temperature patterns for any 

given I(t) and thus the (2) and (5) functionals. 

The algorithm for u(r, t; I(t)) is based on difference methods [12, 13]; for (6) and 
(7), one can introduce nets displaced by half a step, and then one can construct the finite- 
difference approximation for (6) and (7) with order O(~r 2) for (6) or O(Ar 2 + At) for (7), 
in which Ar and At are the steps in r and t. Those schemes for (6) and (7) are readily 
solved by the pivot method with the use of an external iterative loop to incorporate the 

nonlinearity [i0]. 

The nonlinear boundary condition in (7) can be written in linearized form: 

-- I?. (U) --~r u-" r=R "~" t~(y~ (Ulr=R, Ue) (Ulr=R -- Ue), 

in  which a(u, ue)=((u~-273,15)  2+(u~-273,15)2)(u~-ue~-2.273,15)  , which s u b s t a n t i a l l y  improves 
t h e  conve rgence  in  t h e  n o n l i n e a r i t y - i t e r a t i o n  c y c l e .  

One i n c o r p o r a t e s  t h e  s u r f a c e  t e m p e r a t u r e  c o n s t r a i n t  on mold p l a c i n g  in  r e a l i z a t i o n  by 
choosing t 2 from u(R, t 2 )~u  s. 

5. We now report some results obtained with a BESM-6 on a program that implements the 
algorithms in sections 2-4, which relate to a model having the following parameters: R = 
0.05 m, R m = 0.15 m, ~ = 2~-2.4 kHz, n = i00 m -l, 6 = 0.3, u 0 = 500~ u e = 20~ R T = 3.3" 
i0 -5 m2-~ t I = 300 sec, u c = 850~ u s = 900~ u~ = 200~ fi = 1300~ F0 = 4000~ 

Figure 1 shows the temperature dependence of the characteristics for the mold and speci- 
men materials (U(u) = i, c m = 134 J/(kg'~ Pm = 19350 kg/m3); if ~ = 0.2 is the bulk 
porosity, the thermal and electrical conductivities can be derived subject to certain 
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Fig. i. Dependence on temperature u (~ for the mold thermal 
conductivity km, W/m.~ and of the blank thermalconductivity 
k' in the same units, electrical conductivity i in (~-m) -I, 
and specific heat c in J/~ 

Fig. 2. Effects of current amplitude I in A on the thickness 
@ of the region with poor pressing quality in m and on the 
maximum blank temperature Uma x in ~ and the vacuum cooling 
time tco in sec. 

assumptions from ~(a)=k1(u) K, %(u)=%'(u) K in which K = 2(1 - ~)/(2 + E) [14]; the. 
density is p(u) = p'(u)(l - E), p'(u) = 6500 kg/m 3. 

Figure 2 shows the dependence on I for r tco[I] and Umax[/]= max u(r, t>; for 
0 ~ r ~ R  
O~t~t~ 

I ~ 400 A, @[I] : R, which means no pressing. As I increases, the process starts, and @[I] 
falls stepwise and tends to a shallow minimum. For I > 430 A, the current has no appreciable 
effect on @[I], but tco and Uma x continue to increase with I, which shows that simultaneous 
optimization on tco is possible. 

We solved (5) with 8 chosen in the numerical experiment from the estimator for the 

maximal value ~co~= sUPtco~[]] , the minimal value ~* = inf~ [/] and the relation ~o : 0,l~* 
~3 ~j 

which characterizes the relative costs of the optimization criteria. This gave ~ = 10 -5 
(r ~ 10 -2 m, tco ~ i00 sec); here the choice of ~ is not so critical, since varying it 
influences only the minimization-algorithm convergence rate since the optimum control lies 
within the region of the constraints J and the penalties S and S become zero for it. 

This optimization algorithm provides the optimum I under automatic control, and the 
center of the specimen is well pressed. 

These results show that the method is effective for this process; the same approach 
can give the optimization for a more complicated model if one has adequate information on 
the powder's physical parameters. 
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NUMERICAL STUDY OF THE NONEQUILIBRIUM 

FILTRATION OF IMMISCIBLE LIQUIDS 

O. B. Bocharov, V. V. Kuznetsov, 
and Yu. V. Chekhovich 

UDC 532.546 

The uniform displacement of immiscible liquids in a porous medium is studied 
numerically for two difference methods of accounting for nonequilibrium. 

The classical theory of equilibrium filtration of immiscible liquids constructed by 
Masket and Leverett is based on the function of relative phase permeabilities Ki(s) and the 
Leverett function J(s), characterizing the capillary pressure jump. These functions were 
established from experiments on steady-state displacement. The nonsteady displacement pro- 
cess is usually characterized by the presence of regions of sharp change in saturation with 
respect to both space and time, the Masket--Leverett equilibrium theory sometimes being 
invalid in this case. The simplest scheme of allowance for nonequilibrium [i] reduces to 
assuming that the functions Ki(s) and K2(s), J(s) are the same in a nonequilibrium flow as 
in the equilibrium case but depend not on the true water saturation s but on a certain 
effective water saturation o. The authors of [2] proposed a kinetic equation linking the 
effective saturation with the true saturation: 

& 
- s + T f s ) - - -  (1 )  

at 
The methods of asymptotic analysis were used in [2] to obtain the dependence of the width of 
the displacement front on velocity for this model with T(s) = const, while the problem of 
countercurrent capillary impregnation was analyzed in [3]. The problem of displacement with 
large values of the nonequilibrium parameter has not yet been investigated. At the same 
time, the effect of nonequilibrium on displacement characteristics may be great in the flood- 
ing of oil-bearing strata [4]. 

Here, we use a unidimensional formulation to numerically analyze displacement with a 
constant total flow of fluids into the sample (Rappaport--Lees problem) within the framework 
of a model of nonequilibrium filtration with ~(s) monotonically increasing from 0 to ~, and 
s ~ [ O ,  s,]. 

At a constant rate of filtration of the mixture V0, the system cf Masket--Leverett equa- 
tions and Eq. (I) reduce to the following dimensionless equations (with the same notation 
being kept for the dimensionless variables): 

Here, D = ~:,Vo/Lrn; P = P~/P2; 

Os = O t  OxO [ sa(o)~'ocrox - -F(cr ) ] ,  (2)  

DP, (s) ~ t  -+ s = ~. (3)  

= y ]/[(~4/VoLv~; F ((1) = K~ (o')/(Kl (cr) -}- ~.~K2 (cO); a (or) - - -  F ((r) K2 (or) dJ (cr) d---7---; 
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